云顶国际

基于微流控芯片的氟调聚物醇生物转化中肠- 血管- 肝脏 三维相互作用模型

 

期刊:Analytical Chemistry
期刊影响因子:6.8
关联机种:LCMS-8050,采用了云顶国际LCMS-8050及CELLENT微流控装置,用于对氟调聚物醇(FTOH)及其细胞代谢产物的定性和定量分析。

 

Microfluidic Chip-Based Modeling of Three-Dimensional
Intestine‒Vessel‒Liver Interactions in Fluorotelomer Alcohol
Biotransformation

Ning Xu, Haifeng Lin, Jin-Ming Lin, Jie Cheng, Peilong Wang* and Ling Lin*
 
 

Ning Xu − Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences,
Beijing 100081, China;
Haifeng Lin − Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
Jin-Ming Lin − Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry &Chemical Biology,
Tsinghua University, Beijing 100084, China;
Jie Cheng − Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences,
Beijing 100081, China;
Peilong Wang − Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences,
Beijing 100081, China;
Ling Lin − Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China;

 

//doi.org/10.1021/acs.analchem.3c03892
Anal. Chem. 2023, 95, 17064-17072

【ABSTRACT】

Plyfluoroalkyl substance (PFAS), featured with incredible persistence and chronic toxicity, poses an emerging ecological and environmental crisis. Although significant progress has been made in PFAS metabolism in vivo, the underlying mechanism of metabolically active organ interactions in PFAS bioaccumulation remains largely unknown. We developed a microfluidic-based assay to recreate the intestine-vessel-liver interface in three dimensions, allowing for high-resolution, real-time images and precise quantification of intestine-vessel-liver interactions in PFAS biotransformation. In contrast to the scattered arrangement of vascular endothelium on the traditional D-polylysine-modified two-dimensional (2D) plate, the microtubules in our three-dimensional (3D) platform formed a dense honeycomb network through the ECM, with longer tubular structures. Additionally, the slope culture of epithelial cells in our platform exhibited a closely arranged and thicker cell layer than the planar culture. To dynamically monitor the metabolic crosstalk in the intestinal-vascular endothelium-liver interaction under exposure to fluorotelomer alcohols (FTOHs), we combined the chip with a solid-phase extraction-mass spectrometry (SPE-MS) system. Our findingsrevealed that endothelial cells were involved in the metabolic process of FTOHs. The transformation of intestinal epithelial and hepatic epithelial cells produces toxic metabolite fluorotelomer carboxylic acids (FTCAs), which circulate to endothelial cells and affectangiogenesis. This system shows promise as an enhanced surrogate model and platform for studying pollutant exposure as well as for biomedical and pharmaceutical research.

 

【文章概述】

        PFAS 作为一种人工合成化学物质,因其强疏水性与耐化学性被广泛应用于工业和消费品中。然而,其对人类健康和环境的潜在风险正在被关注。尽管目前在体内代谢机制方面有了一定研究,但在器官间交互和代谢路径方面仍缺乏直接证据。微流控芯片技术以其精确模拟复杂生物系统的能力,为研究多器官交互提供了创新性平台。

        中国农业科学院农业质量标准与检测技术研究所“饲料质量安全检测与评价”创新团队与清华大学林金明课题组共同构建了基于器官芯片-质谱系统的毒理评价平台,突破微流控芯片上肠-血管-肝脏细胞界面组装三维(3D)结构器官的瓶颈难题,实现高分辨率、实时图像解析全氟化合物在“肠- 血管- 肝脏”相互作用机制。如图1所示,研究针对传统动物模型周期长和器官作用的时空成像及监测难等问题,利用微流控芯片上组织细胞微环境和流体时空动力学的精确控制和可预测性,开发了包括血管内皮细胞、肠上皮细胞和肝上皮细胞的3D 器官芯片,实现精准调控细胞间物质传输和精确模拟肠- 血管- 肝通讯。与传统2D板上血管内皮的分散排列相反,3D 器官芯片上细胞形成致密的蜂窝状网络,具有更长的管状结构,更接近于真实器官组织。进而利用芯片与固相萃取-质谱系统相结合动态监测暴露于全氟化合物条件下肠-血管内皮-肝相互作用的代谢规律。开发的器官芯片—质谱毒理评价平台不仅为实时监测污染物代谢、转化和毒性作用提供了有力工具,也可用于药物开发和天然产物功能评价。


图1 基于微流控芯片的肠-血管内皮-肝脏3D 共培养系统用于在线监测FTOHs生物转化

        研究团队采用了云顶国际CELLENT 微流控装置及LCMS-8050 液质联用仪,用于对氟调聚物醇(FTOH)及其细胞代谢产物的定性和定量分析。以其稳定的细胞培养、高灵敏度和稳定的多反应监测模式(MRM)提供了精准的数据支持,在检测复杂生物样本中的微量代谢物时表现出很好的性能。该仪器可以可靠地捕获细胞关键代谢物的浓度变化,为解析肠道、血管和肝脏之间的代谢交互机制提供了坚实的基础。